
Lecture 31

Colouring and Bipartite Graphs



Exam Scheduling

Suppose we want to schedule exams for the courses with following course numbers:

   , , , , 111, 340, 400, 250 181 900 720 910

Some courses have some common students:

    (111,400), (111,181), (111,900), (340,250), (340,181), (340,720), (400,181), (400,910)

How many exam slots are necessary to schedule exams so that courses with some common

students have different slots?



Exam Scheduling
Have a vertex for every course and put an edge between any two courses if they have some

common students.
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Number of required slots
Minimum number of colours required to colour each
vertex so that neighbours have different colours 

=



Graph Colouring
Definition: The chromatic number of a graph , denoted by , is the smallest integer 

for which the vertices of  can be coloured by  colours so that adjacent vertices are 

coloured differently.

G χ(G) k
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Example: The below graph is called Petersen Graph and its chromatic number is .3

Definition: A graph is called -colourable, if its vertices can be coloured using  colours 

such that there are no adjacent vertices with the same colour.
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Bipartite Graphs
Definition: A graph  is bipartite if the vertex set of  can be split into disjoint sets 


 and  such that each edge of  is incident on one vertex in  and one vertex in . 
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, A = {1,4} B = {2,3} , A = {1,2,4,7} B = {3,5,6}

Observation: A graph is bipartite if and only if it is -colourable.2
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Alternative Characterisation of Bipartite Graphs
Theorem: A graph is bipartite if and only it does not contain a cycle of odd length.

Proof: ( ⟹ ) Let  be a bipartite graph and hence, should be -colourable.G 2
Suppose there is an odd length cycle  in .C G
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rd colour is needed for .
Hence,  is not -colourable, a contradiction.
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WLOG, colour  blue.v1

Try to colour vertices of  using  colours.C 2  has to be coloured yellow.v2

 has to be 
coloured blue.
v3

…



Proof: (⟹) Let  be a graph with no odd cycles.G
We describe a way to colour  using  colours.G 2
Pick any vertex  of  and colour it red.u G

Divide the rest of the vertices of  into  sets.G 2

‣  is evenSeven = {v ∣ d(u, v) }

‣  is oddSodd = {v ∣ d(u, v) }

Colour all the vertices of  blue and colour all the vertices of  red.Sodd Seven

We prove now that this is a valid colouring.

Let  denote the length of a shortest path from  to d(u, v) u v

…

Alternative Characterisation of Bipartite Graphs



Proof: Suppose it is not a valid colouring.(⟹)
Then there must be two adjacent vertices, say  and , with the same colour, say red.x y
Because  and  are of same colour, they must have even length shortest path from .x y u
Let  be a shortest path from  to  and  be a shortest path from  to .P u x Q u y
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     forms a closed “walk” of odd length.P + xy + reverse(Q)

A closed “walk” of odd length implies a cycle of odd length in , a contradiction.G ◼
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Alternative Characterisation of Bipartite Graphs


