Lecture 31

Colouring and Bipartite Graphs

Exam Scheduling

Suppose we want to schedule exams for the courses with following course numbers:
$111,340,400,250,181,900,720,910$

Some courses have some common students:
$(111,400),(111,181),(111,900),(340,250),(340,181),(340,720),(400,181),(400,910)$

How many exam slots are necessary to schedule exams so that courses with some common students have different slots?

Exam Scheduling

Have a vertex for every course and put an edge between any two courses if they have some common students.

Number of required slots $=\begin{aligned} & \text { Minimum number of colours required to colour each } \\ & \text { vertex so that neighbours have different colours }\end{aligned}$

Graph Colouring

Definition: The chromatic number of a graph G, denoted by $\chi(G)$, is the smallest integer k for which the vertices of G can be coloured by k colours so that adjacent vertices are coloured differently.

Definition: A graph is called k-colourable, if its vertices can be coloured using k colours such that there are no adjacent vertices with the same colour.

Example: The below graph is called Petersen Graph and its chromatic number is 3 .

Bipartite Graphs

Definition: A graph G is bipartite if the vertex set of G can be split into disjoint sets A and B such that each edge of G is incident on one vertex in A and one vertex in B.

Examples:

$$
A=\{1,4\}, B=\{2,3\}
$$

$A=\{1,2,4,7\}, B=\{3,5,6\}$

Not bipartite

Observation: A graph is bipartite if and only if it is 2-colourable.

Alternative Characterisation of Bipartite Graphs

Theorem: A graph is bipartite if and only it does not contain a cycle of odd length.
Proof: (\Longrightarrow) Let G be a bipartite graph and hence, should be 2-colourable.
Suppose there is an odd length cycle C in G.

3 rd colour is needed for $v_{2 k+1}$.
Hence, G is not 2-colourable, a contradiction.

Try to colour vertices of C using 2 colours.
v_{2} has to be coloured yellow.

Alternative Characterisation of Bipartite Graphs

Proof: (\Longleftarrow) Let G be a graph with no odd cycles.
We describe a way to colour G using 2 colours.
Pick any vertex u of G and colour it red.
Let $d(u, v)$ denote the length of a shortest path from u to v
Divide the rest of the vertices of G into 2 sets.

- $S_{\text {even }}=\{v \mid d(u, v)$ is even $\}$
- $S_{o d d}=\{v \mid d(u, v)$ is odd $\}$

Colour all the vertices of $S_{\text {odd }}$ blue and colour all the vertices of $S_{\text {even }}$ red.
We prove now that this is a valid colouring.

Alternative Characterisation of Bipartite Graphs

Proof: (\Longleftarrow) Suppose it is not a valid colouring.
Then there must be two adjacent vertices, say x and y, with the same colour, say red.
Because x and y are of same colour, they must have even length shortest path from u.
Let P be a shortest path from u to x and Q be a shortest path from u to y.

$P+x y+\operatorname{reverse}(Q)$ forms a closed "walk" of odd length.
A closed "walk" of odd length implies a cycle of odd length in G, a contradiction.

